主页 > 动环监控 > 人工智能助力新材料研发(科技大观)--国际--公民网
人工智能助力新材料研发(科技大观)--国际--公民网

  人工智能的研发方兴未艾。随着其应用范围的一直延伸,其余学科也在与人工智能的结合中获得意想不到的收获,新材料便是其中之一。

  目前,国外已有人工智能助力新材料研发的案例报道。英国利物浦大学的科研人员研发了一款机器人,在8天内自主设计化学反应路线,实现了688个实验,找到一种高效催化剂来先进聚合物光催化机能,这项实验若由人工实现将花费数月时光。不久前,日本大阪大学一名教养应用1200种光伏电池材料作为训练数据库,通过机器学习算法研究高分子材料结构和光电感应之间的关联,胜利在1分钟内筛选出有潜在应用价值的化合物结构,传统办法令需5—6年时间。

  这样的成功利用蕴藏了探索新材料和科技进步的无限可能。纵观人类历史,每一次科技革命都与材料的发展非亲非故。产业革命前,石器、青铜器、铁器的发展将手工业逐渐从狩猎和农牧业中分辨出来。第一次工业革命后,钢铁和复合材料逐步占据了人们的日常生活。第三次工业革命后,半导体、高晶硅、高分子材料迅速发展,成为须要量巨大的新材料。本世纪以来,跟着高端制造业的进一步完美,新材料围绕功效化、智能化、集成化发展途径,与纳米技巧、生物技术、信息技术等新兴工业深度融会,成为科技进步的重要手腕。

  新材料的研制是基本研究和应用基础研究彼此融合促进的过程,往往需要经历化学性质改进跟物理加工改良,过程颇为不易。以近年来突起的智能纤维为例,这种新材料能随外界环境刺激发生体积或状况变革,可用于构筑可衣着智能设备。对它研发时,首先要理解其刺激响应机理,并建立一个合适的物理模型进行阐明;其次要决定适合的材料作为研讨对象,运用化学手段改进其功能单元的功能与性质,通过反复实验摸索其刺激响应的条件,并完善结构单元的性能;最后是生产加工,历经纺丝、染整、编织等不同的处理流程,始终进行工艺优化与技能改进。由此可见,新材料研发是一种典型的试错性研发,阅历周期往往较长。

  为了缩短研发周期,人工智能可能作为一个强有力的辅助工具,借助数据共享,对提高材料的物理化学性质进行预测、筛选,从而加快新材料的合成和出产。从前,材料的设计都是通过实践盘算来构建结构跟性质的关系。不过,由于原子有很多不同的联合方式,设计一个新的分子构造就如同一个搭积木游戏,拼搭过程中无奈预知分子的性质。作为人工智能的一个分支,机器学习算法在帮助新材料设计时尤为“得力”,其工作进程主要包括“描写符”生成、模型构建和验证、材料预测、实验验证4个步骤。所谓“描述符”,就是根据现有数据来描述材料的某些特殊性质,再通过非线性的形式构建练习模型,从而猜测新材料性质,这个过程不再依靠物理常识。

  人工智能要想和新材料擦出更多的“火花”,仍面临一些挑战。比喻,AI算法很难准确猜想晶体结构,训练数据的坚固性仍有待理论方法的发展等。为了更好发挥学科交叉融合的乘数效应,除了需要算法不断改进外,实际打算化学的发展、材料性质表征手段的研发也应齐头并进。未来,信赖通过各方科学家的努力,新材料的翻新成果将会不断呈现。

  (作者为中国科学院院士、东华大学材料迷信与工程学院院长、纤维资料改性国家重点试验室主任)


  《 公民日报 》( 2021年04月27日 17 版) (责编:郝江震、白宇)

分享让更多人看到